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LEITER TO THE EDITOR 

Critical behaviour near multiple junctions and dirty surfaces in 
the two-dimensional king model 

Ferenc Iglbit, Loi’c Turban and Bertrand Berche 
Laboratoire de  Physique du Solidet., Universite de  Nancy I, BP239. F-54506 Vandcuvre 
ICs Nancy Cedex. France 

Received 7 June 1991 

Abstrnct. Weconsider m two-dimensional semi-infinite planes of king spins joined together 
through surface spins and study the critical behaviour near to the junction. The m = 0 limit 
o f the  model-according to the replica trick-corresponds to the semi-infinite king model 
in the presence of a random surface field (RSFI) .  Using conformal mapping, second-order 
perturbation expansion around the weak- and strong-coupled planes limits and differential 
renormalization group, we show that the surface critical behaviour of the RSFI model is 
described by k ing  critical exponents with logarithmic corrections to scaling, while at 
multiple junclions ( m  > 2) the transition is of first-order. There is a spontaneous junction 
magnetization at the bulk critical point. 

The critical behaviour of systems near a plane where translational invariance is broken 
is of considerable recent interest [ 1.21. The prototype of these problems is represented 
by the critical phenomena at a free regular surface (semi-infinite criticality), and in 
more complex problems the effect of a perturbation (e.g. surface coupling enhancement, 
interfaces, defects, random surface fields, etc.) can be analysed by relevance-irrelevance 
type criteria [3-51. Such a stability analysis, however, does not work for the two- 
dimensional king model in the case of marginal perturbations caused by a defect line 
[3, 41 or a random surface field ( RSFI)  [ 5 ] ,  when the defect exponent y ,  = 0. In the 
former case non-universal critical behaviour was found by an exact calculation [6 ,  71, 
while for the RSFI model no definite answer is known yet. One of our purposes in the 
present letter is to clarify the critical behaviour of the RSFI model. 

To study this problem we introduce a series of models consisting of m semi-infinite 
planes of king spins where the spins at different surfaces are joined together by nearest 
neighbour couplings (see figure l (a) ) .  (We note that in a recent paper lndekeu and 
Nikas [8] introduced a junction as a product of surface spins and studied the wetting 
phenomena in the m = 3 system in the frame of Landau theory.) The Hamiltonian of 
the system is given by 

m 

H =  1 H,+V 
p = l  

where 
” 

-pH,= 1 1 ~ ~ , ~ p ~ ~ , ~ ~ ~ ” ~ ~ + ~ , ~ ~ + J ~ ~ p ~ ~ , ~ ~ ~ p ~ ~ , ~ + l ~ l  (2) 
y = - m x = ,  
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Figure 1. ( 0 )  m = 3 semi-infinite planes of king spins joined together by surface spins and 
( b )  the corresponding system in the strip geometry. 

and 

Here u'(y, x) = *I are king spins at position y, x on the pth plane, and /3 = I /k ,T .  
For m = 1 and m = 2 we obtain a semi-infinite system and two semi-infinite systems 

joined by a defect line, respectively, while for m = 3 as a possible physical realization 
one can imagine interacting magnetic ions segregated along various planar grain 
boundaries, three of which meet along a linear junction. Due to pair interactions in 
the junction (equation (3)) the perturbation represented by Vis marginal in the ordinary 
surface transition point for all m # 1; thus to clarify the actual critical behaviour one 
needs detailed investigations. 

Now we show that the multiple junction problem is connected to the RSFI model 
defined by the Hamiltonian: 

m 

-Pfig=-PH,+ Z h(y)8 (y .  1) (4) 
y=-m 

where the random surface field h(y) has a Gaussian distribution: 

Since the disorder is quenched, it is the free energy rather than the partition function 
which must be averaged. Using the replica trick: (log 2) = lim,,,[((Z") - l ) / m ]  one 
can easily show that the effective Hamiltonian of the problem is just the m + 0 limit 
of equations (1)-(3) with J =A2. 

In general we are interested in the critical behaviour near to the junction, e.g. we 
look for the critical exponent )I, describing the decay of spin-spin correlations 
(~"(0, l)sp(y, I))= I Y I - ~ * * ~  when the system is at the bulk critical point. Now we suppose 
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that critical correlations in the model transform covariantly under a conformal transfor- 
mation. It is exactly known for m = 1 and m - 2 [9], on the other hand the gap-exponent 
relation ( 6 )  might be valid, even if the system is not conformally invariant [lo]. In the 
following we map the system onto the strip geometry [ll], where the calculation is 
usually simpler to perform. Denoting the points on the pth plane by the complex 
number zp, then the conformal transformation w,, = ( L / T )  log zn, p = 1.2,. . . , m, maps 
the semi-infinite planes onto strips of width L, and the surface spins at both ends of 
the strips are connected to each other with the same type of coupling as in the plane 
geometry, equation (3 )  (see figure l (b)) .  

The critical exponents in the strip geometry can be calculated from the finite-size 
behaviour of the correlation length [l l] .  More precisely we consider the extreme- 
anisotropic limit [ 121 of the model, when the transfer matrix along the strip is expressed 
as T=exp(-af i ) ,  where a is the lattice spacing and f? is a quantum Hamiltonian. 
Then, following Cardy'sderivation [13] one can show that the spectrum of the critical 
Hamiltonian operator H in the large-L limit is given as: 

where Eo and E. are the ground state and the ith excited state off?, respectively, and 
U, is a normalizing facior, ihe so-caiied sound veiociiy. Tne sei of criiicai dimcnsions 
x, describes the decay of correlations of scaling operators '3' along the junction in the 
plane geometry: ( ~ ' ( ~ ) ~ ' ( O ) ) C c l z l - ~ " , .  For the spin operator we have T~ =2x,. The 
spectrum in (6) usually has a tower-like structure; the levels in the same tower differ 
by a n  integer from the lowest one: x. = xp+ I ;  I =  O,1,2,. . . , and xp is the critical 
dimension of a primary operator [ 1 I]. 

C^_ --A-, .I-̂  ^..^..I..... Ll"...:,.....:..- " :" _:...... ^ ^  
ru1 ""I I I I U U S I  u.= q" ' l "LY"1  "allllllu111a.11 I .  I 3  E.1"C" cl3 

In (74 b) U: and U: are Pauli matrices at chain p on site x, the bulk critical point 
corresponds to h = 1 [12], while in the units used in ( 7 )  U, = 2 [14]. Note, that we put 
different values of the couplings at both ends of the chains ( A , ,  A L ) :  the model in 
(1)-(3) corresponds to A l = A L = A .  

free surfaces, say at x = 0 and y = 0. For these 'half-infinite' systems in the Hamiltonian 
equations (2), (3) the summations over y run from 0 to m. Now in the transformed 
geometry the strips are coupled only at one edge and the others are free; furthermore 
in the transformation ~r is replaced by ~r/2,  the angle at the corner [ l l ] .  In  this case 
in (76) we have A , = A  and A L = O .  

strong logarithmic corrections to scaling, and therefore to try to push analytical 
calculations as far as possible. Since for general value of m no exact solution can be 
found, we performed a perturbation expansion around the uncoupled chains limit and 
sum up the most diverging contributions by using the differential renormalization group 
technique. 

XXT- --..a:-- *Lot -..L. -"., "1"- "-..-;A-- CIIC.+P-C n-.r-nrnrl -F -ll-nr ho.,;-- f ..r ,,,c 1.1, U,, ,,.YL "..l .I. YJ ".I" * " L I . , . Y b I  ","..,...a ~"."Y""C" ". p'.Y."l .lY,,l.6 , W Y  

Tn ca!cu!a!c !he speck!!? of (7) one h2s to keep in mind !he possib!e presence af 
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The actual calculation of the coefficients of the weak-junction expansion is rather 
cumbersome; therefore here we present only the final result of the second-order 
calculation; details of the derivation will be published elsewhere [15]. The first gap of 
the system-corresponding to magnetic excitations-in the large-L limit is given by: 

1 2 - 1) - ( A , + A L ) + ( m  -1) ;;i A , A I  
7r 

- (m-l)(m-2)  Tlog L-C (A;+A;)+ ... +o(1/L2)  (8) (: 1 1 
where C =0.036 7 2 . .  . is a constant, and according to (6) the quantity in the square 
bracket is just the leading magnetic exponent x,. The main observation concerning 
equation (8) is that in first order x, is regular and coupling dependent, but the 
second-order coefficient diverges as log L. The perturbation series for higher gaps 
shows the same qualitative picture. On the basis of the differential renormalization 
group [16] one assumes that the higher-order terms of the expansion in (8) are divergent 
too, but these singular terms sum up to a regular contribution when the perturbation 
is marginally irrelevant. 

To show this we start writing the differential renormalization group equations of 
the problem under a change of the length scale e‘ in the form [16]: 

dA, 
-= y d A ,  + bA\:+O(A:) 
d l  

(9) 

-= d A L  ydAL+ bAi+O(A:) 
d l  

where the defect exponent yd= 0 and the perturbation is marginally irrelevant and 
marginally relevant for b < 0 and b > 0, respectively. The solutions of (9) are given as 
A , ( / )  = A,/(l-  bA, / )  and A L ( / )  = A J ( 1 -  bA,/),  respectively. From the transformation 
form of the inverse correlation length 

[ i 1 ( A l , A L ,  L ~ ’ ) = e - ’ [ ~ ’ ( A , ( / ) , A L ( / ) ,  L-’e’) 

one gets the scaling prediction of the gaps for finite systems: 

E. -E ,=  L - ‘ @ ~  (1-b;:log L’l -bALlogL AL ). 
Expanding Qn up to second order in powers of A , ,  A L  one can verify that its form is 
indeed compatible with the expansion in (8) with b = (2/7r)(m -2). One can verify 
similarly that the scaling form (10) is also valid for higher gaps with the same value 
of b. This fact is due to the structure of the second-order degenerate perturbation 
calculation: different gaps are represented by different secular matrices, but all the 
matrix elements are the same function of A , ,  A L  and L independently of the matrix. 

Thus we arrive at the conclusion, that the relevance-irrelevance behaviour of the 
perturbation caused by the junction depends on the value of m :  for positive defect 
couplings it is marginally irrelevant and marginally relevant for m < 2  and m > 2 ,  
respectively. In the borderline case m = 2 the perturbation is fully marginal, the critical 
exponents are coupling dependent [6 ,71.  
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For m < 2 in the large-L limit: IblA, log L>> 1 ,  IblAL log L>> 1, the finite-size 
behaviour of the magnetic exponent is given by: 

Concerning the surface transition of the RSFI model ( m = O )  we get king critical 
exponents with logarithmic correction to scaling 

which is one of the main results of our paper. The finite-size form of the exponent x," 
in ( l l a )  gives a theoretical basis to deduce effective exponents from MC simulations 
or from transfer matrix calculations. We note, that similar behaviour-exponents of 

and the susceptibility of the random bond two-dimensional king model [17], which 
can be considered as the hulk analogue of the RSFI model. 

Now we turn to the problem of multiple junctions ( m  > 2) with ferromagnetic 
interactions. In this case the perturbation is marginally relevant, consequently the 
critical behaviour is controlled by a new fixed point. We believe that the system for 
EOE-Z~E defect coup!lngs undergoes a first-order transIt~nn, there is a spontaneous 
junction magnetization at the bulk critical point. To prove this conjecture we consider 
the strong defect limit of the problem and investigate the stability of the corresponding 
fixed point. 

In the limit A,+m and/or A,+m all the spins in the junctions are parallel, 
consequently the ground state of the system is two-fold degenerate, i.e., the lowest gap 
is zero and there is a spontaneous junction magnetization of the system. In this limit 
the spectrum of fi can be constructed as the direct product of m Virasoro algebras 
corresponding to the spectrum of the king model at the extraordinary transition 
point [ 1 1  1. 

The stability of this fixed point is determined through the size dependence of the 
lowest gap for finite defect couplings. I n  the half-infinite case, A ,  >> 1, AL = 0 in first 
order of I / A ,  the gap is given by [14] 

t h e  -..-~ - - A d  ... :th l - - m A + h - : -  n-----+:--o ~~ hp-rr nhon...mA f-. thn mnnnnt i - .~t ;nn 
lllci Y".C LI.""CI 1*1111 1"6".1L,L""C b",LbC,,"L.D-h"a "..I.. ""I.,. IC" ."I ..,r ,..'.6..'..'Y..".. 

. .  

while for non-zero A L  the leading finite-size dependence of the gap remains the same 
with a more complicated prefactor than in (12). 

According to (12) for m>2 at finite couplings the first gap vanishes faster than 
11 L, thus from (6 )  x, = 0 and the perturbation is irrelevant. The ground state of the 
system is degenerate and there is a spontaneous junction magnetization at the bulk 
critical point in accordance with our claim. We note that a similar mechanism has 
been observed for other problems where surface or interface ordering take place at 
the bulk critical point: the lowest gap vanishes algebraically with the size of the system 
118-201. For m = 2  according to (12) the perturbation is marginal, x, is coupling 

transition is unstable in this region. 
Finally we turn to discuss the critical behaviour near to ajunction with antiferromag- 

netic (AF) interactions. In this case according to equations (9) the signs of b for 
marginally irrelevant and marginally relevant perturbations are interchanged with 

dependeni, while fur m < 2  the gap s;o-wzi than ;i L, thus the exiiaoidinaty 
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respect to the ferromagnetic junction. As a consequence for m > 2 the perturbation at 
the ordinary surface transition point is marginally irrelevant; the critical exponent x. 
together with the logarithmic finite size correction is given by (11). 

It is interesting to study the strong junction limit for AF couplings, which gives 
qualitatively different results for m =odd and m =even. Form =odd, due to frustration, 
there is no extraordinary transition even for infinitely strong couplings in the defect: 
the first gap is proportional to L-"2 [15]. This phenomena resembles the absence of 
phase transition at T=O for super-frustrated models [21]. On the other hand for 
m =even there is an extraordinary transition for infinitely strong AF couplings. The 
perturbation to the first gap is marginal in leading order: E, - Eo= ]/(,U), thus further 
analysis is needed to decide on the type of transition in this case. 

FI is indebted to the Laboratoire de Physique du Solide for hospitality. He is indebted 
to J Indekeu for valuable discussions and sending the preprint in [8!  prior to publication; 
Useful discussions with T V Burkhardt about conformal mapping of the problem are 
also gratefully acknowledged. 
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